Turbofan configurations
Turbofan engines come in a variety of engine configurations. For a given engine cycle (i.e. same airflow, bypass ratio, fan pressure ratio, overall pressure ratio and HP turbine rotor inlet temperature), the choice of turbofan configuration has little impact upon the design point performance (e.g. net thrust, SFC), as long as overall component performance is maintained. Off-design performance and stability is, however, affected by engine configuration.
As the design overall pressure ratio of an engine cycle increases, it becomes more difficult to throttle the compression system, without encountering an instability known as compressor surge. This occurs when some of the compressor aerofoils stall (like the wings of an aircraft) causing a violent change in the direction of the airflow. However, compressor stall can be avoided, at throttled conditions, by progressively:
1) opening interstage/intercompressor blow-off valves (inefficient)
and/or
2) closing variable stators within the compressor
Most modern American civil turbofans employ a relatively high pressure ratio High Pressure (HP) Compressor, with many rows of variable stators to control surge margin at part-throttle. In the three-spool RB211/Trent the core compression system is split into two, with the IP compressor, which supercharges the HP compressor, being on a different coaxial shaft and driven by a separate (IP) turbine. As the HP Compressor has a modest pressure ratio it can be throttled-back surge-free, without employing variable geometry. However, because a shallow IP compressor working line is inevitable, the IPC requires at least one stage of variable geometry.
Single shaft turbofan
Although far from common, the Single Shaft Turbofan is probably the simplest configuration, comprising a fan and high pressure compressor driven by a single turbine unit, all on the same shaft. The SNECMA M53, which powers Mirage fighter aircraft, is an example of a Single Shaft Turbofan. Despite the simplicity of the turbomachinery configuration, the M53 requires a variable area mixer to facilitate part-throttle operation.
Aft fan turbofan
One of the earliest turbofans was a derivative of the General Electric J79 turbojet, known as the CJ805, which featured an integrated aft fan/low pressure (LP) turbine unit located in the turbojet exhaust jetpipe. Hot gas from the turbojet turbine exhaust expanded through the LP turbine, the fan blades being a radial extension of the turbine blades. This Aft Fan configuration was later exploited in the General Electric GE-36 UDF (propfan) Demonstrator of the early 80's. One of the problems with the Aft Fan configuration is hot gas leakage from the LP turbine to the fan.
Basic two spool
Many turbofans have the Basic Two Spool configuration where both the fan and LP turbine (i.e. LP spool) are mounted on a second (LP) shaft, running concentrically with the HP spool (i.e. HP compressor driven by HP turbine). The BR710 is typical of this configuration. At the smaller thrust sizes, instead of all-axial blading, the HP compressor configuration may be axial-centrifugal (e.g. General Electric CFE738), double-centrifugal or even diagonal/centrifugal (e.g. Pratt & Whitney Canada PW600).
Boosted two spool
Higher overall pressure ratios can be achieved by either raising the HP compressor pressure ratio or adding an Intermediate Pressure (IP) Compressor between the fan and HP compressor, to supercharge or boost the latter unit helping to raise the overall pressure ratio of the engine cycle to the very high levels employed today (i.e. greater than 40:1, typically). All of the large American turbofans (e.g. General Electric CF6, GE90 and GEnx plus Pratt & Whitney JT9D and PW4000) feature an IP compressor mounted on the LP shaft and driven, like the fan, by the LP turbine, the mechanical speed of which is dictated by the tip speed and diameter of the fan. The high bypass ratios (i.e. fan duct flow/core flow) used in modern civil turbofans tends to reduce the relative diameter of the attached IP compressor, causing its mean tip speed to decrease. Consequently more IPC stages are required to develop the necessary IPC pressure rise.
[edit] Three spool
Rolls-Royce chose a Three Spool configuration for their large civil turbofans (i.e. the RB211 and Trent families), where the Intermediate Pressure (IP) compressor is mounted on a separate (IP) shaft, running concentrically with the LP and HP shafts, and is driven by a separate IP Turbine. Consequently, the IP compressor can rotate faster than the fan, increasing its mean tip speed, thereby reducing the number of IP stages required for a given IPC pressure rise. Because the RB211/Trent designs have a higher IPC pressure rise than the American engines, the HPC pressure rise is less resulting in a shorter, lighter, more rigid engine. However, three spool engines are harder to both build and maintain. The greater rigidity means that there is less distortion of the engine casing under 'g' loads during flight, resulting in less blade tip rubbing and, therefore, a slower in-service deterioration of component performance and specific fuel consumption.
The Turbo-Union RB199 military turbofan also has a three spool configuration, as does the Russian military Kuznetsov NK-321.
Geared fan
As bypass ratio increases, the mean radius ratio of the fan and LP turbine increases. Consequently, if the fan is to rotate at its optimum blade speed the LP turbine blading will spin slowly, so additional LPT stages will be required, to extract sufficient energy to drive the fan. Introducing a (planetary) reduction gearbox, with a suitable gear ratio, between the LP shaft and the fan, enables both the fan and LP turbine to operate at their optimum speeds. Typical of this configuration are the long-established Honeywell TFE731, and the recent Pratt & Whitney PW1000G.
Military turbofans
Most of the configurations discussed above are used in civil turbofans, while modern military turbofans (e.g. SNECMA M88) are usually Basic Two Spool.
High Pressure Turbine
Most civil turbofans use a, high efficiency, 2-stage HP turbine to drive the HP compressor. The CFM56 uses an alternative approach: a single stage, high-work, unit . While this approach is probably less efficient, there are savings on cooling air, weight and cost. In the RB211 and Trent series, Rolls-Royce split the two stages into two discrete units; one on the HP shaft driving the HP compressor; the other on the IP shaft driving the IP (Intermediate Pressure) Compressor. Modern military turbofans tend to use single stage HP turbines.
Low Pressure Turbine
Modern civil turbofans have multi-stage LP turbines (e.g. 3, 4, 5, 6). The number of stages required depends on the engine cycle bypass ratio and how much supercharging (i.e. IP compression) is on the LP shaft, behind the fan. Because of the much lower bypass ratios employed, military turbofans only require one or two LP turbine stages.
Cycle improvements
Consider a mixed turbofan with a fixed bypass ratio and airflow. Increasing the overall pressure ratio of the compression system raises the combustor entry temperature. Therefore, at a fixed fuel flow there is an increase in (HP) turbine rotor inlet temperature. Although the higher temperature rise across the compression system implies a larger temperature drop over the turbine system, the mixed nozzle temperature is unaffected, because the same amount of heat is being added to the system. There is, however, a rise in nozzle pressure, because overall pressure ratio increases faster than the turbine expansion ratio, causing an increase in the hot mixer entry pressure. Consequently, net thrust increases, whilst specific fuel consumption (fuel flow/net thrust) decreases. A similar trend occurs with unmixed turbofans.
So turbofans can be made more fuel efficient by raising overall pressure ratio and turbine rotor inlet temperature in unison. However, better turbine materials and/or improved vane/blade cooling are required to cope with increases in both turbine rotor inlet temperature and compressor delivery temperature. Increasing the latter may require better compressor materials.
Overall pressure ratio can be increased by improving fan (or) LP compressor pressure ratio and/or HP compressor pressure ratio. If the latter is held constant, the increase in (HP) compressor delivery temperature (from raising overall pressure ratio) implies an increase in HP mechanical speed. However, stressing considerations might limit this parameter, implying, despite an increase in overall pressure ratio, a reduction in HP compressor pressure ratio.
According to simple theory, if the ratio turbine rotor inlet temperature/(HP) compressor delivery temperature is maintained, the HP turbine throat area can be retained. However, this assumes that cycle improvements are obtained, whilst retaining the datum (HP) compressor exit flow function (non-dimensional flow). In practise, changes to the non-dimensional speed of the (HP) compressor and cooling bleed extraction would probably make this assumption invalid, making some adjustment to HP turbine throat area unavoidable. This means the HP turbine nozzle guide vanes would have to be different from the original! In all probability, the downstream LP turbine nozzle guide vanes would have to be changed anyway.
Thrust growth
Thrust growth is obtained by increasing core power. There are two basic routes available:
a) hot route: increase HP turbine rotor inlet temperature
b) cold route: increase core mass flow
Both routes require an increase in the combustor fuel flow and, therefore, the heat energy added to the core stream.
The hot route may require changes in turbine blade/vane materials and/or better blade/vane cooling. The cold route can be obtained by one of the following:
- adding T-stages to the LP/IP compression
- adding a zero-stage to the HP compression
- improving the compression process, without adding stages (e.g. higher fan hub pressure ratio)
all of which increase both overall pressure ratio and core airflow.
Alternatively, the core size can be increased, to raise core airflow, without changing overall pressure ratio. This route is expensive, since a new (upflowed) turbine system (and possibly a larger IP compressor) is also required.
Changes must also be made to the fan to absorb the extra core power. On a civil engine, jet noise considerations mean that any significant increase in Take-off thrust must be accompanied by a corresponding increase in fan mass flow (to maintain a T/O specific thrust of about 30lbf/lb/s), usually by increasing fan diameter. On military engines, the fan pressure ratio would probably be increased to improve specific thrust, jet noise not normally being an important factor