Low bypass turbofans

Low bypass turbofans


Schematic diagram illustrating a 2-spool, low-bypass turbofan engine with a mixed exhaust, showing the low-pressure (green) and high-pressure (purple) spools. The fan (and booster stages) are driven by the low-pressure turbine, whereas the high-pressure compressor is powered by the high-pressure turbine


A high specific thrust/low bypass ratio turbofan normally has a multi-stage fan, developing a relatively high pressure ratio and, thus, yielding a high (mixed or cold) exhaust velocity. The core airflow needs to be large enough to give sufficient core power to drive the fan. A smaller core flow/higher bypass ratio cycle can be achieved by raising the (HP) turbine rotor inlet temperature.

Imagine a retrofit situation where a new low bypass ratio, mixed exhaust, turbofan is replacing an old turbojet, in a particular military application. Say the new engine is to have the same airflow and net thrust (i.e. same specific thrust) as the one it is replacing. A bypass flow can only be introduced if the turbine inlet temperature is allowed to increase, to compensate for a correspondingly smaller core flow. Improvements in turbine cooling/material technology would facilitate the use of a higher turbine inlet temperature, despite increases in cooling air temperature, resulting from a probable increase in overall pressure ratio.

Efficiently done, the resulting turbofan would probably operate at a higher nozzle pressure ratio than the turbojet, but with a lower exhaust temperature to retain net thrust. Since the temperature rise across the whole engine (intake to nozzle) would be lower, the (dry power) fuel flow would also be reduced, resulting in a better specific fuel consumption (SFC).

A few low-bypass ratio military turbofans (e.g. F404) have Variable Inlet Guide Vanes, with piano-style hinges, to direct air onto the first rotor stage. This improves the fan surge margin (see compressor map) in the mid-flow range. The swing wing F-111 achieved a very high range / payload capability by pioneering the use of this engine, and it was also the heart of the famous F-14 Tomcat air superiority fighter which used the same engines in a smaller, more agile airframe to achieve efficient cruise and Mach 2 speed.