Afterburning turbofans

Afterburning turbofans

Since the 1970s, most jet fighter engines have been low/medium bypass turbofans with a mixed exhaust, afterburner and variable area final nozzle. An afterburner is a combustor located downstream of the turbine blades and directly upstream of the nozzle, which burns fuel from afterburner-specific fuel injectors. When lit, prodigious amounts of fuel are burnt in the afterburner, raising the temperature of exhaust gases by a significant amount, resulting in a higher exhaust velocity/engine specific thrust. The variable geometry nozzle must open to a larger throat area to accommodate the extra volume flow when the afterburner is lit. Afterburning is often designed to give a significant thrust boost for take off, transonic acceleration and combat maneuvers, but is very fuel intensive. Consequently afterburning can only be used for short portions of a mission. However the Mach 3 SR-71 was designed for continuous operation and to be efficient with the afterburner lit.

Unlike the main combustor, where the downstream turbine blades must not be damaged by high temperatures, an afterburner can operate at the ideal maximum (stoichiometric) temperature (i.e. about 2100K/3780Ra/3320F). At a fixed total applied fuel:air ratio, the total fuel flow for a given fan airflow will be the same, regardless of the dry specific thrust of the engine. However, a high specific thrust turbofan will, by definition, have a higher nozzle pressure ratio, resulting in a higher afterburning net thrust and, therefore, a lower afterburning specific fuel consumption. However, high specific thrust engines have a high dry SFC. The situation is reversed for a medium specific thrust afterburning turbofan: i.e. poor afterburning SFC/good dry SFC. The former engine is suitable for a combat aircraft which must remain in afterburning combat for a fairly long period, but only has to fight fairly close to the airfield (e.g. cross border skirmishes) The latter engine is better for an aircraft that has to fly some distance, or loiter for a long time, before going into combat. However, the pilot can only afford to stay in afterburning for a short period, before his/her fuel reserves become dangerously low.

Modern low-bypass military turbofans include the Pratt & Whitney F119, the Eurojet EJ200 and the General Electric F110 and F414, all of which feature a mixed exhaust, afterburner and variable area propelling nozzle. Non-afterburning engines include the Rolls-Royce/Turbomeca Adour (afterburning in the SEPECAT Jaguar) and the unmixed, vectored thrust, Rolls-Royce Pegasus.